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Large proportion of genes in one cryptic WO
prophage genome are actively and sex-specifically
transcribed in a fig wasp species
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Abstract

Background: Cryptic prophages are genetically defective in their induction and propagation, and are simply
regarded as genetic remnants. There are several putative cryptic WO prophages in the sequenced Wolbachia
genomes. Whether they are lytic is unclear and their functions are poorly understood. Only three open reading
frames (ORFs) in cryptic WO prophages have been reported to be actively transcribed.

Results: In this study, we comprehensively examined the transcription of the only cryptic WO prophage (WOSol) in
a Wolbachia strain that infects a fig wasp, Ceratosolen solmsi (Agaonidae, Chalcidoidea). By analyzing the
transcriptions of all the ORFs of WOSol in both sexes of C. solmsi, using qualitative and quantitative methods, we
demonstrated that i) a high percentage of ORFs are actively transcribed (59%, 17/29); ii) the expression of these
ORFs is highly sex-specific, with a strong male bias (three in females and 15 in males); iii) an ank (ankyrin-domain-
containing) gene actively transcribed in both wasp sexes is more highly expressed in males.

Conclusions: A large proportion of the genes in the cryptic WO prophage WOSol are expressed, which overturns
the concept that cryptic prophages are simply genetically defective. The highly sex-specific expression patterns
of these genes in the host suggest that they play important roles in Wolbachia biology and its reproductive
manipulation of its insect host, particularly through the males.

Keywords: Defective prophage, Bacteriophage WO, Reverse-transcription PCR, Real-time quantitative PCR,
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Background
Bacteriophages, or phages, are viruses that infect bacteria,
and can be either lytic or temperate. Lytic phages are strict
pathogens of their bacterial hosts, and their infections cul-
minate in the production of large numbers of new viral
particles and lysis of the host cells. Temperate phages, such
as the WO phages in Wolbachia, have two different forms.
They can be lysogenic, with the viral DNA integrating into
the host DNA and replicating as part of the host chromo-
some, which is referred to as the “prophage” form [1].
However, upon some signals, they can also be induced to
produce a lytic form, which generates virions and causes
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bacterial lysis [2,3]. For example, some WO prophages
have been reported to form virions, including WOCauB2
and WOCauB3 [4], WOVitA1 [5,6], WOCauB1 [7], and at
least one haplotype located in the Wolbachia infecting
Drosophila melanogaster [8].
Wolbachia, a cytoplasmically inherited Rickettsiales,

causes a number of reproductive anomalies in its arthro-
pod hosts, including cytoplasmic incompatibility (CI)
[9], parthenogenesis [10], feminization of genetic males
[11], and male killing [12]. These reproductive pheno-
types impart a selective advantage on Wolbachia [13,14],
facilitating the spread of Wolbachia infections in the
host population. More than 80% of Wolbachia strains
contain bacteriophage-WO-related gene fragments [15],
so whether the mobile genetic elements of the WO
phages contribute to Wolbachia’s reproductive manipu-
lation of their hosts is a hot topic. Based on evidence
from G + C content and codon usage analyses of
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Wolbachia and WO, some scholars indicate that Wolba-
chia and WO have had a very long evolutionary association
and that WO must confer some benefit on Wolbachia
[16]. However, some Wolbachia strains without WO
can still manipulate the reproduction of their hosts, in-
dicating the dispensability of WO in the function of
Wolbachia [15,17].
Selective pressure can cause the degradation of pro-

phages to genetically defective forms [18]. Prophages
may become trapped in the chromosome of the host
through recombination and/or deletion, and gradually
decay [19], becoming inactive in terms of cell lysis,
phage particle production, and plaque formation. These
prophage fragments are referred to as cryptic or defect-
ive prophages [20]. To date, several putative cryptic WO
prophages have been found in the sequenced Wolbachia
strains [21,22]. However, all of these putative cryptic
WO prophages occur with at least one other complete
WO prophage, carrying the complete head, baseplate,
and tail gene modules that are essential for proper phage
function [22,23]. For example, prophages WORiA and
WORiB are regarded as cryptic prophages in Wolbachia
wRi, which infects D. simulans, but occur with at least
one active phage, WORiC [23].
Bacteriophages play many roles in the ecology and

genomic evolution of bacteria. For example, they can
mediate lateral gene transfer [24], and in some cases
provide their hosts with beneficial genes [25,26]. Bacte-
riophages can also regulate the numbers of their host
bacteria by inhibiting their replication or inducing cell
lysis [5]. Furthermore, as mentioned above, some WO
phages may contribute to Wolbachia’s reproductive ma-
nipulation of their hosts. Cryptic prophages can also
benefit their hosts, because they can be involved in the
host physiology and biofilm formation [27], and can in-
crease the host’s resistance to general environmental
stresses and to antibiotics [28]. Although cryptic pro-
phages may have functions in the host, we still know
very little about the mechanisms of these functional pro-
cesses. The introduction of novel genes by these phages
may confer beneficial phenotypes on their hosts [28] and
prophage–prophage interactions could also be important
pathways through which the potential activities of de-
fective prophages are induced [29].
However, the expression and functions of cryptic WO

prophage in Wolbachia are still poorly known. Until
now, only two ank genes [30] and a putative DNA aden-
ine methyltransferase gene (met2) [23] located within
the cryptic WO prophage WORiB have been reported
to be actively transcribed, and may play active roles in
Wolbachia biology [20]. This suggests that there is an
extreme paucity of data on the active transcription of
the genes of cryptic WO prophages. In this study, we con-
firmed a cryptic WO prophage, WOSol, in Wolbachia
strain wSol, which infects the fig wasp Ceratosolen solmsi.
This is the only prophage detected in wSol. WOSol is
highly degenerate and may lack a tail module. We dem-
onstrated a comprehensive analysis of the transcription
of this putative cryptic phage WO. Surprisingly, we
found that a high percentage of the genes of this cryptic
prophage are actively transcribed and display signifi-
cantly different expression patterns in female and male
fig wasps.

Results
Only one cryptic prophage occurred in C. solmsi
In our previous study [31], we have demonstrated that
the fig wasp species C. solmsi is infected by a single
Wolbachia strain that contains only one defective pro-
phage WOSol, which lacks a tail module. Here, using
real-time quantitative PCR (real-time qPCR), we counted
and compared the densities of the Wolbachia genomes
(represented by the single-copy groEL gene), and the
phage WOSol genomes (represented by the single-copy
orf7 gene) to determine whether WOSol was replicated
extrachromosomally (the primers are listed in Additional
file 1). With a single lysogenic copy of WOSol, the WOSol
density should always equal (no lytic activity) or exceed
(with lytic activity producing multiple phage virions) the
wSol copy number [32]. The correlation between the copy
counts of groEL and orf7 can thus reflect the total phage
abundance in the female and male individuals of C. solmsi.
We calculated the relative copy numbers (orf7:groEL) in
31 female and 35 male wasp individuals. The mean rela-
tive densities were consistent with the prediction of a
single integrated copy in the Wolbachia genome and
indicated no extrachromosomal WOSol (0.88 ± 0.05 in
females and 1.15 ± 0.06 in males; all p values >0.05; two-
tailed t test; Additional file 2).
The total bacteriophage WOSol abundance correlated

strongly with the total bacterial abundance in both fe-
males (rho = 0.8756, P <0.0001; Figure 1A) and males
(rho = 0.8064, P <0.0001; Figure 1B), as expected for a
cryptic prophage with which a lysogenic phage is co-
transmitted in the bacterial host.
We also designed degenerate PCR primers based on the

sequenced phage WO genomes (phage tail tape measure
protein, GenBank accession number: CP001391.1|:758
319-759499, AB478515.1|:52906-54086, AB478516.1|:48
642-49819, CP003883.1|:1115914-1117093, AE017196.1|:
553968-555151, CP003884.1|:442584-443767, AM99988
7.1|:1409653-1410819; phage late control gene protein
GpD, GenBank accession number: AB478515.1|:55418-
56398, CP001391.1|:755998-756978, AB478516.1|:51163-
52143, CP003883.1|:1118431-1119411, HQ906662.1|:389
50-39741, AM999887.1|:482503-483235, AM999887.1|:14
12374-1413106) to amplify the bacteriophage WO tail
genes, and obtained no successful amplification with



Figure 1 The correlation between the abundance of prophage WOSol and that of Wolbachia wSol in females (A) and males (B) of C.
solmsi. Each circle on the charts denotes the absolute copy number of a single-copy gene (orf7) of prophage WOSol (according to the vertical
axis) and a single-copy gene (groEL) of Wolbachia wSol (according to the horizontal axis) in an adult female or male C. solmsi individual infected
with Wolbachia. Altogether, 31 female and 35 male wasps were investigated. Correlation coefficients (rho values) and significances (P values) were
calculated according to the nonparametric method of Spearman’s rho.
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normal PCR (data not shown). This further suggested
that WOSol had no tail module. Moreover, we amplified
no WOSol genes from Wolbachia-uninfected fig wasp
individuals with normal PCR, by which we could ex-
clude the possibility that prophage WOSol was present
in the genome of the fig wasp.
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High percentage of genes in the cryptic prophage WOSol
genome were actively transcribed
Using reverse transcription PCR (RT–PCR) and nested
RT–PCR, which have been commonly used in previous
WO phage studies (details in the Methods section), we
examined the mRNA expression of all 29 genes of the
cryptic prophage WOSol in both female and male fig
wasps (the primers are listed in Additional file 3). In fe-
males, only three ORFs were actively transcribed, whereas
15 ORFs were actively transcribed in males (Table 1 and
Additional file 4).
We then summarized the transcribed genes in the

different modules of the WOSol genome. Of the three
genes transcribed in females, So0006 and So0015 were
from the baseplate and head module, respectively, but
So0029 was uncharacterized. However, in males, all the
modules, except the virulence module, included actively
transcribed ORFs (Figure 2).
The prophage genes showed variable expression levels

and sex-specific differences in the fig wasp (Table 1). Of
the expressed genes, some were highly expressed and could
be detected with conventional RT–PCR, whereas some
were expressed at low levels and could only be detected
with an additional round of nested PCR. All of the actively
transcribed genes were expressed in either the females or
males, but not both, except an ank gene (So0029), which
was actively transcribed in both females and males.

Real-time qPCR assay of So0029 gene expression in
female and male C. solmsi
The results described above showed that an ank gene
(So0029), the only actively transcribed gene expressed in
both females and males, differed in its expression in the
two sexes: low in females and high in males (Table 1).
However, these results were based on qualitative RT–PCR,
and differences in primer sensitivity and primary template
concentrations could affect the levels of amplified product.
Therefore, we used real-time qPCR to quantitatively exam-
ine the expression of this gene (the primers are listed in
Additional file 1). The So0029 gene was expressed with
sex-dependent variations after normalization with the ex-
pression of the fig wasp’s nuclear genes of RPL13a & UBC,
and groEL gene from Wolbachia (Figure 3A and C). How-
ever, the Wolbachia gene groEL showed sex-independent
expression after normalization to the RPL13a and UBC
genes, suggesting that the level of Wolbachia infection was
not a major part of the observed variations of the phage
gene So0029 (Figure 3B). Altogether, our data showed that
the only one actively transcribed gene in both sexes,
So0029, was sex-dependently expressed.

Discussion
In this study, we confirmed the presence of a single
cryptic prophage WOSol in the only wSol genome in the
fig wasp species C. solmsi, and demonstrated that a large
proportion of the genes of the cryptic prophage were
actively transcribed. Cryptic prophages are genetically
defective because of the deletion or disruption of genes
essential for their lytic growth and the production of in-
fectious particles. Therefore, they have been regarded as
simple genetic remnants, and researchers have tended to
ignore their possible functions [29]. Recently, investiga-
tors noticed that cryptic prophages can confer multiple
benefits on their hosts [27,28]. However, how the cryptic
prophage WO affects its host, Wolbachia, is poorly under-
stood. To our knowledge, WORiA and WORiB are the
only two known cryptic WO prophages confirmed by
real-time qPCR to have no lytic processes, but have be-
come trapped in the chromosome of wRi [23]. Only three
ORFs within the WORiB genome have been shown with
RT–PCR to be actively transcribed and may therefore
have roles in Wolbachia biology [20,30]. These actively
transcribed ORFs may function in Wolbachia wRi during
its infection of D. simulans, through prophage–prophage
interactions, because wRi harbors four prophage genomes
[30]. Unexpectedly, in this study, we detected that of the
29 ORFs of the only cryptic prophage WOSol genome in
C. solmsi, 17 are actively transcribed, which suggests that
they may also play essential roles in the biology of Wolba-
chia wSol. Moreover, some “cryptic” prophage haplotypes,
although they have not been finally confirmed, have been
reported to transcribe phage-related genes, with potential
to affect the host biology. For example, the met2 gene of
“cryptic” prophages WOMelA and WOMelB within wMel
are actively transcribed in both sexes of D. melanogaster
[20]. In the “cryptic” prophages within wPip, the sex-
specific expression of ank in Culex quinquefasciatus [33]
and the stage-specific expression of orf7 in C. pipiens [34]
have also been detected. All these results suggest that in
the cryptic prophage WO, there are many genes that play
active roles to Wolbachia biology.
The phenomenon of the reproductive manipulation by

Wolbachia of its host is compelling, but the molecular
basis remains unknown [7,35,36]. One potential mechan-
ism is the variable expression and activity of Wolbachia
genes in the female and male insect hosts or their infec-
tions with different Wolbachia strains [37]. However, vari-
able gene expression in Wolbachia is suggested to occur at
a low rate, considering that only a small number of regula-
tory genes have been identified in the sequenced Wolba-
chia genomes [37,38]. Interestingly, in bacteriophage WO,
some genes are sex- [33,34,37], stage- [34], and strain-
specifically expressed in the host [34,39], which suggests
that WO contributes to the manipulation by Wolbachia of
its host. In the cryptic prophage WOSol, the expressions of
ORFs are highly sex specific (three in female fig wasps, 15
in males, with only one ORF actively transcribed in both
females and males), which leads us to make an assumption



Table 1 Sex-specific RNA expression of the cryptic prophage WOSol

ORF ID Product ♀ ♂

So0001 Site-specific recombinase n- n-

So0002 Putative phage related protein n- +

So0003 Ankyrin repeat-containing prophage LambdaW1 n- n+

So0004 Ankyrin repeat-containing prophage LambdaW1, authentic point mutation; This gene contains a
premature stop which is not the result of sequencing error, pseudo

n- n+

So0005 Tail I n- +

So0006 Prophage LambdaW1, baseplate assembly protein J n+ n-

So0007 Prophage LambdaW1, baseplate assembly protein W n- +

So0008 Baseplate assembly protein GpV n- +

So0009 Conserved hypothetical protein n- n-

So0010 Prophage LambdaW5, minor tail protein Z, authentic frameshift; This gene contains a frame shift which is not
the result of sequencing error, pseudo

n- +

So0011 Conserved hypothetical protein n- n-

So0012 Major capsid protein, putative n- n-

So0013 Conserved hypothetical protein n- n-

So0014 Minor capsid protein C, putative n- +

So0015 Phage portal protein + n-

So0016 Lyzozyme M1 n- n-

So0017 Conserved hypothetical protein n- n+

So0018 Phage terminase large subunit GpA, authentic frameshift; This gene contains a frame shift which is not the result
of sequencing error, pseudo

n- n-

So0019 Conserved hypothetical protein n- n-

So0020 Prophage LambdaW1, DNA methylase,authentic frameshift; This gene contains a frame shift which is not the
result of sequencing error, pseudo

n- n-

So0021 Putative Holliday junction resolvasome, endonuclease subunit n- +

So0022 RepA,fragement; This gene is a fragement which is not the result of sequencing error. Identified by
similarity to NZ_CAGB01000010.1:4487..6541, pseudo

n- n-

So0023 Putative rhoptry protein n- n+

So0024 Regulatory protein RepA, authentic frameshift; This gene contains a frame shift which is not the result of
sequencing error, pseudo

n- n+

So0025 Helicase, SNF2 family, authentic frameshift; This gene contains a frame shift which is not the result of
sequencing error, pseudo

n- n+

So0026 Patatin family protein, fragement; This gene is a fragement which is not the result of sequencing error.
Identified by similarity to NC_002978.6:549882..550790, pseudo

n- n-

So0027 Hypothetical protein n- n+

So0028 Ankyrin repeat protein n- n-

So0029 Ankyrin repeat protein n+ +

Notes: +, positive using conventional RT-PCR; n+, positive using nested RT-PCR; n-, negative using both conventional and nested RT-PCR. ♂, male adult of C.solmsi;
♀, female adult of C.solmsi.
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that these genes may have the possibility to be involved
(directly or indirectly) in CI in C. solmsi by wSol, based on
the high prevalence of Wolbachia (more than 80% infec-
tion, as previously reported; 83.3% (364/437) in the present
study) [31,40] and the highly female-biased sex ratio of this
species [40]. However, we need to experimentally confirm
the present of CI phenotype in the species first. Further-
more, it is especially interesting that far more genes (15 of
the 17 actively transcribed genes) are expressed in males,
which further hints that the WO genes function as effec-
tors, causing Wolbachia to exert different effects on the
two sexes of the host. Future studies should examine the
stage- and tissue-specific transcription of these phage
ORFs. Interesting questions to be addressed are whether
this sex-specific transcription reflects differences in the ex-
pression of the gene products in the ovaries and/or oocytes



Figure 2 Distributions of sex-specifically expressed ORFs in each module of the cryptic prophage WOSol. In females, So0006 in the
baseplate module, So0015 in the head module, and So0029 in the uncharacterized module are actively expressed; in males, So0005, So0007,
So0008, and So0010 in the baseplate module, So0014 in the head module, So0024 in the replication module, and So0002, So0003, So0004,
So0017, So0023, So0021, So0025, So0027, and So0029 in the uncharacterized module are actively expressed.
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(in the female) and the testes and/or spermatocytes (in the
male), and whether these genes may be involved in repro-
ductive manipulation.
ANK mediates interactions between proteins, and thus

acts as a transcription factor to regulate the expression of
proteins involved in diverse aspects of cell biology [41,42].
ANK is commonly found in eukaryote and viral proteins,
whereas it is relatively rare in bacteria [41,43]. There are
often only 1–3 ank genes in the α-Proteobacteria, includ-
ing Rickettsia, Anaplasma, and Ehrlichia [44,45]. How-
ever, notably, some CI- inducing bacteria strains encode
the largest number of ANK proteins. For example, there
are 60 ank genes in Wolbachia wPip from C. pipiens [46],
35 in Wolbachia strain wRi infecting D. simulans [30], 23
in Wolbachia strain wMel in D. melanogaster [47], and 19
in Cardinium hertigii, cEper1 [48]. However, in mutualist
Wolbachia strains, the ank genes are very reduced; for ex-
ample, only five in wBm [49] and six in wOo [50]. The
overrepresentation of ANK proteins in CI-inducing but
distantly related Cardinium and Wolbachia strains thus
suggests that ANK plays important roles in the process of
CI [48]. The sequence variability of ank genes in CI-
inducing strain wMel and non-CI-inducing wAu [51], and
sex-specific expression patterns of some ank genes in wRi
and wPip also suggest that they function directly in the
reproductive manipulation by the bacteria of their hosts
[30,33,37]. We detect an ank gene that is actively tran-
scribed in both the females and males of C. solmsi, and
its level of expression is higher in males. Further investi-
gation of all the ank genes in Wolbachia wSol may help
to determine whether ANK proteins are responsible for
the reproductive manipulation of this fig wasp species
by Wolbachia.
Surprisingly, we note that some structural prophage

ORFs are actively transcribed in C. solmsi. For example,
the ORF So0015 (in the head module) and So0006 (in
the baseplate module) are actively transcribed in females,
whereas ORF So0014 (in the head module) and ORFs
So0005, So0007, and So0008 (all in the baseplate mod-
ule) are actively transcribed in males. Structural ORFs
are often expected to be expressed during the viral repli-
cation process and their transcription levels are consid-
ered to be evidence of whether bacteriophage WO is a
lytic virion or an inactive prophage [34]. However, bac-
teriophage WOSol is a cryptic prophage and there is no
viral replication. Therefore, rather than being actual struc-
tural/lytic genes responding to a density signal, these ac-
tively transcribed structural ORFs may have evolved some
new functions in C. solmsi, distinct from their roles in viral
structure formation.

Conclusions
We comprehensively examine the transcription of a
cryptic WO prophage in a Wolbachia strain and find
that large proportion of the genes are actively expressed,
which confirms that cryptic prophages are not nonfunc-
tional fragments. The highly sex-specifically transcribed
cryptic WO prophage genes may indicate their import-
ant roles in Wolbachia biology and its master manipula-
tion of insect host, which need further study.



Figure 3 Expressions of the ank gene in female and male
individuals of C. solmsi. Expression of So0029 was provided after
normalized with fig wasp’s nuclear gene (RPL13a & UBC), and with
Wolbachia groEL gene expression (A and C, respectively). Expression
of groEL was provided relative to RPL13a & UBC expression (B). Each
value represents the average ± SE of six biological replicates for
females and males. The asterisk indicates a significant difference
between females and males (P <0.05).
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Methods
Sample collection
Ceratosolen solmsi, the pollinator species of Ficus his-
pida (Moraceae), was collected from Danzhou (N19°30′
29″, E109°29′6″), Hainan Province, China, in June 2013.
All fig fruits were collected at the same developmental
stage, several days before becoming ripe. The female and
male pollinators removed from the inside of the syconia
were adults because the fig wasps are in the adult stage
after they emerge from the galls into the fig syconia. They
were identified and confirmed according to their morpho-
logical traits, under a Nikon SMZ80 microscope. Some
specimens were immersed in Sample Protector (TaKaRa,
Beijing, China) for RNA extraction and the others were
immersed in 95% ethanol for DNA extraction.
In total, eight RNA sample groups (four female and

four male samples; because the fig pollinators are very
small, we used 10 whole-body individuals for each RNA
sample) were collected to qualitatively determine the tran-
scription of the prophage genes by RT–PCR. An add-
itional 12 RNA sample groups (six female and six male
samples; each sample contained 10 individual wasps) were
collected to quantitatively determine the transcription of
the So0029 and groEL genes with real-time qPCR.
DNA was extracted from 31 female and 35 male wasps

to determine their infection with Wolbachia, and to
compare the gene densities of Wolbachia (wSol) and the
WO prophage (WOSol), determined with real-time qPCR.

RNA isolation and cDNA synthesis
Total RNA from each RNA sample was extracted with
TRIzol Reagent (Invitrogen) and treated with RNase-free
DNaseI (Invitrogen). A NanoDrop-2000 spectrophotom-
eter (Thermo, Madison, WI, USA) was used to measure
the RNA purity (A260/A280) and concentration. The key
issue related to this method is the “false positives” gener-
ated by genomic DNA contamination, so before reverse
transcription, all RNA samples were confirmed to con-
tain no genomic DNA contamination by PCR with the
universal Wolbachia wsp 81 F/691R primers [52] using
TransTaq polymerase High Fidelity (TransGen Biotech,
Beijing, China), [20,34] (Additional file 5). First-stranded
cDNA was then synthesized from 1 μg of total RNA with
random primers [53] in a 20 μl reaction volume using
TransScript II First-Strand cDNA Synthesis SuperMix
(TransGen Biotech, Beijing, China). wsp expression was
characterized as the positive control to demonstrate the
quality of all the cDNA samples (Additional file 5).

DNA extraction
Total genomic DNA was extracted from each wasp using
the EasyPure Genomic DNA Extraction Kit (TransGen
Biotech, Beijing, China), following the manufacturer’s
recommendations, and suspended in 20 μl of double-
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distilled sterile water. DNA purity and concentration
was determined with a NanoDrop-2000 Spectropho-
tometer (Thermo, Madison, WI, USA). The Wolbachia
infection status of these wasps was confirmed by PCR
with the wsp 81F/691R primers [52].

RT–PCR and real-time qPCR expression analysis
Only expressed prophage genes can confer benefit on its
bacterial host [54]. Therefore we tested the candidate
functional genes for transcription. RT–PCR and some-
times nested RT–PCR with inner primer pairs were used
to qualitatively determine the expression of all 29 ORFs
of the prophage WOSol. Nested RT–PCR was only used
when conventional RT–PCR did not detect the targeted
fragment. Two samples were tested to represent each gene
and sex; the positive results for the expressed genes that
are presented in Table 1 show that all the genes were
expressed in both samples.The resulting amplicons were
run on a 1% TBE agarose gel and photographed under UV
illumination. The PCR products were purified with the
EasyPure PCR Purification Kit (TransGen Biotech, Beijing,
China) and directly sequenced with an ABI3730 capillary
autosequencer (Biosune, Beijing, China).
Real-time qPCR was performed with a Stratagene

Mx3000p qPCR system (Stratagene, La Jolla, CA) (the
primers are listed in Additional file 1). Reaction volumes
of 20 μl containing 1 μl of template, 10 μl of TransStart
Green qPCR SuperMix UDG (TransGen Biotech, Beijing,
China), 0.4 μl of Passive Reference Dye II (50×) (TransGen
Biotech, Beijing, China), 0.8 μl of primer mix (0.2 mM),
and 7.8 μl of sterile water were prepared. A no-template
control was included in each run to check for reagent con-
tamination. A melting curve analysis was performed for
each run to confirm the amplification specificity. The
same thermal conditions were used for all real-time qPCR
reactions: 40 cycles of 95°C for 10 s, 57°C for 15 s, and
72°C for 10 s. Two technical replicate experiments were
performed for each real-time qPCR assay.
To quantify the densities of a minor capsid protein

gene (orf7) from WOSol and a heat-shock protein 60
gene (groEL) [5] from wSol in the DNA templates, we
prepared standard solutions for the real-time qPCR. The
PCR amplicons for orf7 or groEL were resolved electro-
phoretically on TBE 1.0% agarose gel, and then cloned
with the pEasy-T5 Zero Cloning Kit (TransGen Biotech,
Beijing, China). The plasmids were then prepared with
the EasyPure Plasmid MiniPrep Kit (TransGen Biotech,
Beijing, China), and quantified with a NanoDrop-2000
spectrophotometer (Thermo, Madison, WI, USA). Stand-
ard 10-fold dilution series from 107 to 103 copies were pre-
pared and used to calculate the copy numbers of the genes.
We also calculated the expression of So0003, So0007,

So0014, So0015, and So0025 relative to that of reference
genes. Several studies have demonstrated that the mean
of individual PCR efficiencies (Em) gives a more reliable
result than efficiencies derived with a standard curve be-
cause interwell differences would lead to the erroneous
determination of gene expression, and an assumption of
identical efficiency for each well confound the data ana-
lysis [55-57]. Therefore, we obtained all the Em values by
determining the baseline from the raw real-time qPCR
data using LinRegPCR [58,59]. The quantification cycle
(Cq) and Em values obtained from LinRegPCR were then
used to calculate the relative expression of the selected
genes with respect to the reference genes RPL13a and
UBC, with the following equation [60]:

Ri
Rref

¼ 1= 1þ Em‐i
� �Cq‐i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 1þ Em‐að ÞCq‐a

� �2
þ 1= 1þ Em‐b

� �Cq−b� �2
r

Ri is the expression of each selected gene; Rref is the ex-
pression of the reference genes; Ri/Rref is the expression
of each selected gene normalized to that of the reference
genes; Cq-i and Em-i are the quantification cycle value
and the mean individual PCR efficiency for each selected
gene, respectively; Cq_a and Cq_b are the quantification
cycle values for each reference gene; Em_a and Em _b are
the mean individual PCR efficiencies for each reference
gene. Six biological replicates for females and males were
performed in our experiments. Two technical replicate ex-
periments were performed for each real-time qPCR assay.

Statistical analysis
The average copy number of the integrated phage was
compared with the expected number and the difference
was analyzed statistically with a two-tailed t test (SAS
Institute, Cary, NC, USA). In the real-time qPCR experi-
ments, small plate effects (the apparent trends towards
slightly elevated or reduced threshold cycle (Ct) values for
the same template DNA used for the standard curve be-
tween different plates) were common. We normalized the
plate effects using a common threshold with a multiple
experiment analysis (MxPro QPCR Software, Stratagene,
La Jolla, CA). Correlation coefficients were calculated
using nonparametric Spearman’s rho (JMP v.5.0, SAS In-
stitute, Cary, NC, USA). One-way ANOVA (SAS Institute,
Cary, NC, USA) was used to test for variations in the
levels of ank mRNA between female and male C. solmsi.
The significance level for all analyses was set at P <0.05.

MIQE guidelines
For the real-time qPCR, we followed the Minimum
Information for Publication of Quantitative Real-Time
PCR Experiments (MIQE) guidelines [61] to increase the
reliability and integrity of the results, and to promote ex-
perimental consistency and transparency between research
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laboratories. The MIQE checklist is provided in Additional
file 6.

Availability of supporting data
The data sets supporting the results of this article are
available in the LabArchives repository, DOI:10.6070/
H4S46PXM and https://mynotebook.labarchives.com/doi/
NzY1NzUuMnw1ODkwNC81ODkwNC9Ob3RlYm9vay8y
NzczMDg2MjMxfDE5NDM4My4y/10.6070/H4S46PXM.

Additional files

Additional file 1: The primer pairs used for real-time qPCR analysis.
Notes: Es(%),PCR reaction efficiency; R2, Pearson correlation
coefficient.

Additional file 2: Summary statistics for the Quantitative PCR.

Additional file 3: All the primers used for RT-PCR and nested
RT-PCR.

Additional file 4: The electrophoresis pictures of the RT-PCR and
nested RT-PCR for all the studied genes. So0001 ~ So0029, the ORF
IDs of prophage WOSol. For the image of each gene: M, 100 bp DNA
ladder; For each ORF, the first round of RT-PCR (first lane, for female
sample; second lane, for male sample; third lane, positive control with
gonomic DNA as template; fourth lane, negative control with distilled
water as template); If the first and/or the second lane did not detect the
targeted fragment, then the fifth and/or the sixth lane is nested RT-PCR
with diluted products of the first and/or the second RT-PCR as template;
The following two lanes are nested RT-PCR with diluted products of the
third and fourth lane PCR products as template.

Additional file 5: The electrophoresis pictures of PCR products of
wsp gene with wsp 81 F/691R primers. PCR based on template of total
RNA with DNaseI treatment but no reverse transcription (A) and first-
stranded cDNA samples which were synthesized from 1 μg of total RNA
with random primers in a 20 μl reaction volume using TransScript II
First-Strand cDNA Synthesis SuperMix (TransGen Biotech, Beijing, China)
(B). The comparison between (A) and (B) indicates that the RNA samples
are not contaminated by genomic DNA. Lane 1 ~ 19: the results of 19
samples. PC: positive controls with genomic DNA as template. NC:
negative controls with distilled water as template. M: 100 bp DNA ladder.

Additional file 6: Minimum Information for Publication of
Quantitative Real-Time PCR Experiments.
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