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Wolbachia are widespread intracellular bacteria infecting the major classes of arthropods and some filarial
nematodes. In arthropods, Wolbachia have evolved various intriguing reproductive manipulations, including
cytoplasmic incompatibility, parthenogenesis, feminization, and male killing. Sixteen supergroups ofWolbachia
have been identified, named A–Q (except G). Though Wolbachia present great diversity in arthropods, spiders,
especially cave spiders, are still a poorly surveyed group of Wolbachia hosts. Here, we report a novel Wolbachia
supergroup from nine Telema cave spiders (Araneae: Telemidae) based on five molecular markers (16S rRNA,
ftsZ, gltA, groEL, and coxA). In addition, phageWO, which was previously reported only inWolbachia supergroups
A, B, and F, infects this new Wolbachia supergroup. We detected a 100% infection rate for phage WO and
Wolbachia in Telema species. The phylogenetic trees of phage WO and Wolbachia are not congruent, which
suggests that horizontal transfer of phage WO has occurred in these secluded species. Additionally, these data
indicate Telema–Wolbachia-phage WO may be a good model for exploring the horizontal transfer history of
WO among different host species.

© 2016 Published by Elsevier B.V.
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1. Introduction

Wolbachia are maternally inherited rickettsial endosymbiotic bacte-
ria in the class Alphaproteobacteria and are one of themost widespread
obligate intracellular bacteria in some classes of arthropods and nema-
todes (Ferri et al., 2011; Hilgenboecker et al., 2008; Jeyaprakash and
Hoy, 2000; Werren, 1997). A meta-analysis has suggested that 40% of
insect species are infected with Wolbachia (Zug and Hammerstein,
2012). Wolbachia use an arsenal of reproductive manipulations in
hosts, including feminization (Legrand et al., 1987), parthenogenesis
(Stouthamer et al., 1990), male killing (Werren et al., 1994), and
cytoplasmic incompatibility (Breeuwer and Werren, 1990). These
phenotypes contribute to increasing the frequency of infected females
in a host population, thus propagatingWolbachiaworldwide.

Wolbachia are highly divergent and have been divided into 16
supergroups (A–Q, except for G, which is a combination of A
and B) (Augustinos et al., 2011; Baldo et al., 2007; Bing et al., 2014;
Bordenstein and Rosengaus, 2005; Glowska et al., 2015; Haegeman
et al., 2009; Lo et al., 2002; Ros et al., 2009). TheWolbachia supergroups
are classified mainly based on the genetic distance of the molecular
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markers 16S rRNA, gltA (encoding citrate synthase), groEL (encoding
heat-shock protein 60), coxA (encoding cytochrome c oxidase), ftsZ
(encoding cell division protein), and wsp (encoding Wolbachia surface
protein) (Casiraghi et al., 2005; O'Neill et al., 1992; Werren and
Windsor, 2000). Wolbachia genotyping is inferred from multi locus
sequence typing (MLST) of genes (gatB, coxA, hcpA, fbpA, and ftsZ) and
the four hypervariable regions ofWSP protein (Baldo et al., 2006, 2005).

Genome reduction is the predominant evolutionary trend in obligate
intracellular bacteria and most are bacteriophage absent, like Buchnera
(Moran and Bennett, 2014; Shigenobu et al., 2000). In Wolbachia,
phage WO is widespread, with about 89% Wolbachia strains harboring
WO (Bordenstein and Wernegreen, 2004). However, almost all of the
phage WO infections are within Wolbachia supergroups A, B, and
F. Based on genomic analyses, Wolbachia supergroups C and D have
lost phage WO (Darby et al., 2012; Foster et al., 2005). Whether phage
WO plays some role in Wolbachia reproductive manipulation or can be
developed to be a genetic vector for Wolbachia research are two
hot topics (Kent and Bordenstein, 2010). Indeed, some sex specific
(Sinkins et al., 2005) and stage-specific expression of WO genes
(Sanogo and Dobson, 2006; Wang et al., 2014) has been shown, which
indicates that these genes may play an active role inWolbachia biology.
Phage WO is a temperate phage that can transfer within and between
discrete Wolbachia supergroups (A and B) (Gavotte et al., 2004; Kent
et al., 2011), which suggests that phage WOmight mediate gene trans-
fer. However, we still have little knowledge of whether otherWolbachia
supergroups are infectedwith phageWO, and if yes,whether phageWO
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can transfer between more discrete Wolbachia supergroups except
between previously reported supergroups A and B.

Although Wolbachia is well characterized in insects, there are few
reports of Wolbachia diversity in spiders. Studies have shown that
some spiders are infected with Wolbachia belonging to supergroups
A and B (Duron et al., 2008a; Goodacre et al., 2006; Lo et al., 2007;
Rowley et al., 2004; Vanthournout et al., 2011). In the present study,
we address Wolbachia diversity in cave spiders. Cave environments
are regarded as an extreme habitat characterized by cool and moist
air, permanent darkness, scarce energy sources, and constant environ-
ment compared with surface conditions (Gabriel and Northup, 2013;
Zhang and Li, 2014). Usually, endosymbionts are critical for host adapta-
tion and survival in cave environments, and there are novel endosymbi-
onts compared to the external biota (Morse et al., 2012; Paoletti et al.,
2013). Thus,Wolbachia diversity in cave spidersmay have been affected
by long-term isolation from externalWolbachia strains. In this study, we
examine the distribution of Wolbachia in Telema cordata and eight
species of the Telema cucurbitina “species complex” collected from
Guangxi Province, China. All of these spider species are typical cave
spiders. We not only detected 100% prevalence of Wolbachia and
phageWO in these Telema species, but also identified that theWolbachia
infecting the Telema species belong to a novel supergroup (supergroup
R). In addition, we reveal the horizontal transfer of phage WO among
the distant Wolbachia supergroups A and R.

2. Materials and methods

2.1. Spider collection and identification

All of the spiders used in the study (see Table 1) were collected in
Guangxi Province, China from April to July, 2013. The specimens were
carefully morphologically identified, and the given names were cited
from Zhang et al.'s study (Zhang and Li, 2014). All identified spiders
were initially immersed in 95% ethanol and subsequently maintained
at−20 °C until DNA extraction.

2.2. Isolation, amplification, and sequencing of genomic DNA

Before DNA extraction, each specimen was washed several times
with 70% ethanol followed by sterile water to remove surface
contaminants. DNA was isolated from each spider using an EasyPure
Genomic DNA extraction kit (TransGen, Beijing, China) following the
Table 1
Screening of Wolbachia and phage WO in Telema species.

Telema species Locationa 16S
rRNA

fbpA gatB h

Telema cucurbitina complex
sp. Cave_num1

Lingui country (25°12.819′N,
110°12.050′E)

+ + − −

Telema cucurbitina complex
sp. Cave_num2

Liuzhou city (24°13.782′N,
109°24.663′E)

+ + − −

Telema cucurbitina complex
sp. Cave_num6

Yangshuo country (24°56.686′N,
110°36.369′E)

+ + − +

Telema cucurbitina complex
sp. Cave_num7

Laibin city (22°43.648′N,
109°05.447′E)

+ + − −

Telema cucurbitina complex
sp. Cave_num10

Xiangzhou country (23°57.278′N,
109°39.696′E)

− − − −

Telema cucurbitina complex
sp. Cave_num11

Lingchuan country (25° 18.575′N,
110° 13.875′E)

+ − − −

Telema cucurbitina complex
sp. Cave_num14

Guizhou city (25° 16.33′N,
110° 18.25′E)

+ − − −

Telema cucurbitina complex
sp. Cave_num15

Liuzhou city (24° 13.782′N,
109° 24.663′E)

+ − − −

Telema cordata Xiangzhou country (23° 57.278′N,
10° 39.696′E)

+ + − +

+: positive amplification,
−: failure to detect amplification product.

a All of the places are in Guangxi Province, China.
manufacturer's recommendations. The quality of the DNA templates
was confirmed by the amplification of a partial fragment of
cytochrome c oxidase subunit I with the primers LCO1490 and
HCO2198 (see Table S1) (Vrijenhoek, 1994). DNA templates of poor
quality were discarded.

All species (Table 1) were screened for the presence of Wolbachia
strains by amplification of 16S rRNA and/or wsp using the primers
shown in Table S1. When Wolbachia were identified, additional PCR
was carried out based on Wolbachia protein-coding genes (ftsZ, gltA,
groEL, coxA, gatB, fbpA, and hcpA) and phage WO minor capsid gene
orf7 (Table 1). All the primers are shown in Table S1.

The PCRprogramwas 5min at 94 °C; 30 cycles of 30 s at 94 °C, 40 s at
47–60 °C, and 25 s at 72 °C; and 10 min at 72 °C for the final extension
step. Negative controls with sterile water as template were used for all
PCR experiments. The PCR components were added as recommended
by the manufacturer of TransTaq DNA Polymerase HiFi Fidelity
(TransGen, Beijing, China). The PCR products were electrophoresed
using 1% agarose gels in Tris-CH3COOH buffer. Following electrophore-
sis, the gels were dyed with GelStain (TransGen, Beijing, China) and
imaged on a VILBER FUSION FX5 (Vilber Lourmat, France). If there was
a single amplified band, the PCR products were purified with the
EasyPure PCR purification kit (TransGen, Beijing, China) and directly
sequenced with an ABI 3730 sequencer (Biosune, Beijing, China). If
there were more than one amplification band, the expected band was
excised from the gels and purified with the EasyPure Quick Gel PCR pu-
rification kit (TransGen, Beijing, China) and cloned with the Peasy-T5
vector (TransGen, Beijing, China); a minimum of three positive clones
were sequenced. For each gene, at least two specimens per species
were sequenced. All de novo nucleotide sequences in this study were
deposited in GenBank under accession numbers KT319068–KT319104
and KU057803–KU057809.

2.3. Sequence analyses

We used representative Wolbachia supergroups described in the
literature to classify Wolbachia strains from Telema species. The
representative strains for each Wolbachia supergroup were chosen for
which at least two of the five Wolbachia loci (16S rRNA, ftsZ, gltA,
groEL, and coxA) were available from the GenBank (http://www.ncbi.
nlm.nih.gov/genbank/). We translated the protein coding sequences
into amino acid sequences by the TranslatorX version 1.1 (Abascal
et al., 2010). Then we aligned the protein sequences using MUSCLE
cpA gltA groEL coxA ftsZ wsp orf7 No. of
specimens

Wolbachia
infection rate
(%)

WO
infection
rate (%)

− − + − + + 12 100 100

− − + − + + 11 100 100

− − + + − + 10 100 100

− − + − − + 15 100 100

− − − − + + 3 100 100

− − + − + + 13 100 100

− − + − + + 4 100 100

− − + − + + 3 100 100

− + + + + + 16 100 100

http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
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and subsequent back translation into codon sequences. The 16S
rRNA sequences were aligned using Infernal, a stochastic context-free
grammar-based aligner (http://rdp.cme.msu.edu/) (Cole et al., 2014).
We created a supermatrix of the five alignments (16S rRNA, coxA, ftsZ,
gltA, and groEL) with FASconCAT version 1.0 (Kuck and Meusemann,
2010), and the nucleotide acid was replaced with “N” if we failed to
obtain the gene sequence in the Wolbachia strain. We determined
the best partitioning models for each of the genes with Partition
Finder version 1.1.1 (Lanfear et al., 2012). The best partitioning model
for Wolbachia concatenated genes (16S rRNA, coxA, ftsZ, gltA, and
groEL) was in Table S2. We used Anaplasma marginale and Ehrlichia
ruminantium as outgroups.

For WO orf7 gene, jModelTest 2 (Darriba et al., 2012) was used to
determine the best evolutionary model based on the corrected
Akaike information criterion (AICc). PhyML 3.0 (Guindon et al.,
2010) or RAxML v8 (Stamatakis, 2014) was used to build Maximum
Likelihood (ML) phylogenetic trees, andMrBayes 3.2 (Ronquist et al.,
2012) was used to build phylogenetic trees with Bayesian Inference
(BI) methods.
Fig. 1. Phylogenetic tree based on a supermatrix offiveWolbachia loci (16S rRNA, coxA, ftsZ, gltA,
Wolbachia loci (16S rRNA, coxA, ftsZ, gltA, and groEL) were available were used in this analysis.
values based on 1000 replicates and Bayesian posterior probabilities are depicted as num
probability). Only values larger than 50% are shown. The Wolbachia strains are characterized
are highlighted in bold. Capital letters indicate previously reported Wolbachia supergroups and
To evaluate the topological congruence, we employed the
Shimodaira–Hasegawa test (SH-test) (Shimodaira and Hasegawa,
1999) in RAxML v8 (“-f h” option) (Stamatakis, 2014) for statistical
support. One paired constraint tree generated from the ML analysis
(phageWO and theirWolbachia hosts, 1000-bootstrap trees generated)
was compared by the SH-test.

Potential recombination events for 16S rRNA, coxA, ftsZ, and groEL
were done for individual and concatenated alignments, including gltA,
using the recombination detecting program RDP4 v.4.24 by all
algorithms (RDP, Genconv, Maxchi, Chimera, Siscan LARD, BootScan
and 3Seq) (Martin et al., 2010) and Phi test in SplitsTree4 (Bruen
et al., 2006). We used the default options for all analyses.

3. Results

3.1. Prevalence of Wolbachia and bacteriophage WO in Telema species

Screening of 87 individuals of the nine Telema species showed that
the infection rates ofWolbachia and phage WO are 100% for all species.
and groEL). All previously reportedWolbachia supergroups forwhich at least two of thefive
Maximum Likelihood (ML) and Bayesian inference methods were utilized. ML bootstrap
bers beside each branch (the first number is ML value and the later one is Bayesian
by the names of their host species. New Wolbachia from spiders described in this study
the novel supergroup R.

http://rdp.cme.msu.edu
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Screening was based on both 16S rRNA and/or wsp PCR assays for
Wolbachia and orf7 PCR assays for phage WO (Table 1).

3.2. Phylogenetic analysis of spider Wolbachia strains indicating a
novel supergroup

We used five Wolbachia markers, including 16S rRNA, gltA, groEL,
coxA, and ftsZ, for the Wolbachia phylogenetic analysis (Table S3). We
excluded gatB, fbpA, and hcpA for further analysis, as we obtained few
PCR products from selected host species (see Table 1). These results
indicate that there might be too many mismatches on priming regions
and that the Wolbachia in these spiders are genetically divergent.
Analyses of these five loci (3241 bp in total) reveals that Telema species
(For Telema cucurbitina complex sp. Cave_num10, we obtained few
sequences. Thus, we did not analyze this species here. See Discussion
section) are infected by one Wolbachia supergroup that is divergent
from other previously defined supergroups, which we propose to
name supergroup R (Fig. 1). Phylogenetic tree analyses show that
Wolbachia strains in each of the supergroups, represented by more
than one strain, are monophyletic, although the relationships between
the supergroups are still unclear (Fig. 1). In the single gene analyses,
all Wolbachia genes from Telema are again recovered as monophyletic,
except one gene from T. cucurbitina complex sp. Cave_num15, which
clusters with Wolbachia supergroup B (16S rRNA) and one gene from
T. cucurbitina complex sp. Cave_num2, which clusters with Wolbachia
supergroup A (coxA) (Fig. S1). These results indicate we may not infer
phylogenetic relationship just based on one gene and support the exis-
tence of the new Wolbachia supergroup R. We tested recombination
events for alignments of individual 16S rRNA, coxA, ftsZ, groEL and
concatenated with gltA using RDP4 v.4.24 (Martin et al., 2010) and Phi
test in SplitsTree4 (Bruen et al., 2006). No indication of significant
recombination events was detected.

3.3. Lateral transfer of bacteriophages WO among different Wolbachia
supergroups

Based on the analyses of WO minor capsid gene orf7, we demon-
strate lateral transfer of WO between different Wolbachia supergroups
of A and R. First, we detected identical orf7 sequences in distantly
related Wolbachia supergroups (orf7 in phages of WOVitA2 and
WOCor1from supergroups A and R) (Fig. 2). Second, the phage WO
phylogenetic tree based on orf7 (Fig. 2) does not correlate with the
Wolbachia phylogeny (Fig. 1). We compared the ML phylogenies of
Fig. 2. Phage WO phylogeny based on orf7. The phageWO phylogeny was constructed based on
theHKYmodel. ML bootstrap values based on 1000 replicates and Bayesian posterior probabilit
one is Bayesian probability). Only values larger than 50% are shown. The name for each sequenc
letter denoting the Wolbachia supergroup.
phage WO and Wolbachia using the SH-test (Shimodaira and
Hasegawa, 1999) to statistically examine the topological incongruence
(Fig. 3). For the phylogenetic tree of orf7, we chose only one orf7
sequence if more than one phage WO haplotypes infects the same
Wolbachia strain and precluded the duplicate orf7 sequence in
Wolbachia of Telema species, as most of theseWolbachia strains harbor
identical orf7 sequence (Fig. 2). The phage WO phylogenetic tree has
significant differences compared to the Wolbachia phylogenetic tree
(p b 0.01, D (LH) = 92.90, SD = 14.90, SH-test), which indicates a
strong topological incongruence between bacteriophage WO and
Wolbachia (Fig. 3).
4. Discussion

4.1. Increasing our knowledge of Wolbachia in spiders

Considering the high incidence of Wolbachia in insects, the infec-
tion ofWolbachia in the spiders is also worthy of investigation. How-
ever, there have only been a few reports of Wolbachia in spiders,
which found that these spiders containedWolbachia strains of super-
groups A and B that commonly infect insects (Baldo et al., 2008;
Duron et al., 2008b; Rowley et al., 2004; Woo Oh et al., 2000).
There have been no previous reports of theWolbachia in the cave spi-
ders, which live in a long-term isolated environment. The Wolbachia
diversity in these spiders may have been affected by this special
ecology. Endosymbionts play critical roles for host adaptation and
survival in secluded habitats, like the cave environment. Some
cave-dwelling animals owe their life to chemolithoautotrophic bac-
teria (Engel et al., 2010; Sarbu et al., 1996) and many novel genera
of bacteria have been reported (Morse et al., 2012; Paoletti et al.,
2011). Here, we undertake a Wolbachia survey in cave spiders (Telema
species) and discovered a new Wolbachia supergroup, R. Deduced
from the single haplotype of wsp sequences, almost all of the Telema
species we detect are infected by a single Wolbachia strain, which
belongs to supergroup R (Fig. 1), except T. cucurbitina complex sp.
Cave_num10. For T. cucurbitina complex sp. Cave_num10, we did not
obtain any information for which supergroup of Wolbachia it harbors
(see below). The reproductive phenotype caused by Wolbachia in
Telema species is unknown, but female biased sex-ratio distortion
has been observed in Telema species (unpublished data), suggesting
that this new Wolbachia supergroup may induce male killing or
parthenogenesis in Telema spiders.
Maximum Likelihood (ML) and Bayesian Inference (BI) of orf7 sequences (123 bp) using
ies are depicted as numbers beside each branch (the first number isML value and the latter
e is given as the phageWO haplotype followed byWolbachia strain, arthropod host, and a



Fig. 3.Comparisons of phageWOandWolbachiaphylogenies. ThephageWOphylogenywas constructed based on theMaximumLikelihood (ML) of orf7 sequences (124 bp) using theHKY
model. TheWolbachia phylogenywas constructed based on a supermatrix of fiveWolbachia loci (16S rRNA, coxA, ftsZ, gltA, and groEL). ML bootstrap values on 1000 replicates are depicted,
and only values larger than 50% are shown. For Wolbachia, the name of the host arthropod species is followed by the Wolbachia strain name if there is more than one Wolbachia strain
infecting this species. For phage WO, the name is the phage WO haplotype. Each line between the two phylogeny trees connects the phage WO haplotype and Wolbachia strain that
infecting the same arthropod species.
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4.2. Wolbachia has more diversity than previously discovered

The increasing discovery of newWolbachia supergroups (Augustinos
et al., 2011; Bing et al., 2014;Glowska et al., 2015; Ros et al., 2009), includ-
ing the new supergroup R reported here, has led us to rethinkWolbachia
diversity and the relationships of different Wolbachia supergroups. To
date, onlyWolbachia supergroups A, B, C, andDhave a robust relationship
based on phylogenomics analyses (Comandatore et al., 2013). For other
supergroups, because of limited data, the phylogenetic relationship is
based on only single gene or part of the concatenated conserved genes.
Therefore, the status and relative relationship of these supergroups
need further confirmation (Bing et al., 2014; Glowska et al., 2015). In
the present study in Telema species, both phylogenetic trees of a single
gene or a supermatrix of five loci reveal a monophyletic pattern (Figs. 1
and S1), which supports the existence of a newWolbachia supergroup R.

It is noteworthy that for a peculiar species, T. cucurbitina complex
sp. Cave_num10, we do not obtain any amplification of the
Wolbachia gene markers, 16S rRNA, fbpA, gatB, hcpA, ftsZ, gltA, groEL,
and coxA (Table 1), although the Wolbachia gene of wsp and phage
WO gene orf7 were positively detected (Table 1). Thus, we predict
that this species may harbor a distinct Wolbachia strain or super-
group compared with the other Telema species. Many examples of
certain genera or species harboring distinct Wolbachia lineages have
been reported, e.g. in Syringophilopsis turdi (coinfected by supergroups
F & P), Torotrogla (coinfected by supergroups F, P & Q) (Glowska et al.,
2015), Bemisia tabaci (coinfected by supergroups B and O) (Bing et al.,
2014), Cinara (coinfected by supergroups A, B, & M), Toxoptera
(coinfected supergroups M & N) (Augustinos et al., 2011), and Bryobia
(coinfected by supergroups B & K) (Ros et al., 2009).
4.3. Phage WO can horizontally transfer among distant Wolbachia
supergroups

Phage WO was first sequenced in the year of 2000 (Masui et al.,
2000). Since then, many more phage WO genomes have been reported
alongwithWolbachia genome sequences (Wang et al., 2013). There has
been evidence that phageWO can transfer between differentWolbachia
strains (Chafee et al., 2010; Gavotte et al., 2004) and differentWolbachia
supergroups (Kent et al., 2011). However, all of these examples are from
Wolbachia supergroups A and B. Mutualistic Wolbachia supergroups C
and D have lost phage WO (Darby et al., 2012; Foster et al., 2005).
To our knowledge, except in Wolbachia supergroups A–D and F, there
have been no studies of phageWO in the other knownWolbachia super-
groups. Here, we report that phage WO also exists at a high infection
rate (100%) in Wolbachia supergroup R (Table 1), and phage WO can
horizontally transfer between Wolbachia supergroups A and R (Fig. 1).
This indicates that these two Wolbachia supergroups, though the rela-
tive relationship between is more distant than between supergroups A
and B, may coinfect the same hosts in nature. These results also raise
new questions. For example, does phageWO infect the otherWolbachia
supergroups (E and H–Q)? If so, what is the evolutionary route of
phage WO among these distinct Wolbachia supergroups? The answers
to these questions will be determined in future studies based on more
comprehensive survey studies.
5. Conclusion and outlook

We conducted a comprehensive detection of Wolbachia and phage
WO in Telema cave spiders. Our findings have broadened the host
spectrum of Wolbachia (detection of a novel supergroup) and phage
WO (infecting the novel Wolbachia supergroup). Although Telema
species live in cave environments are confined to a small geographic
area, and have little communication with the external biota (Zhang
and Li, 2013), phage WO lateral transfer between distinct Wolbachia
supergroups has occurred. This indicates that Telema species and their
Wolbachia endosymbionts may be a good model for the exploration of
horizontal transfer of phage WO.
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